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Two types of foldable rings are designed using polynomial
continuation. The first type of ring, when deployed, forms
regular polygons with an even number of sides and is de-
signed by specifying a sequence of orientations which each
bar must attain at various stages throughout deployment. A
design criterion is that these foldable rings must fold with
all bars parallel in the stowed position. At first, all three Eu-
ler angles are used to specify bar orientations, but elimina-
tion is also used to reduce the number of specified Euler an-
gles to two, allowing greater freedom in the design process.
The second type of ring, when deployed, forms doubly plane-
symmetric (irregular) polygons. The doubly-symmetric rings
are designed using polynomial continuation, but in this ex-
ample a series of bar end locations (in the stowed position)
is used as the design criterion with focus restricted to those
rings possessing eight bars.

1 Introduction
Many problems in linkage design can be expressed in

polynomial form, with design variables such as lengths,
thicknesses and internal angles making up the monomials
of the equations. Individual equations can take the form of
closure/compatibility equations which define the particular
conformation of the linkage, or constraint equations which
define particular features the linkage should possess. The
power of this approach to linkage design (establishing a set
of general closure/constraint equations and directly solving
the resulting system of equations for the design variables
contained within) lies in its ability to provide not just one,
but all of the combinations of design variables which satisfy
the problem description. A famous example of the direct so-
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lution of systems of polynomial equations to reveal a number
of feasible sets of design variables is planar 4-bar point path
synthesis, initially achieved using five precision points [1,2],
and then a full set of nine points [3]. The authors of each of
these articles made use of homotopy continuation methods,
but such methods are by no means the only tools available
for the solution of systems of kinematic equations. Often,
given a sufficiently high quality estimate of the required de-
sign variables, a simple application of Newton’s method, or
a numerical optimisation [4, 5] will lead to a single satisfac-
tory result. Several non-gradient based optimisation methods
have also been tried [6, 7].

Where it is possible to manipulate the system of clo-
sure/constraint equations representing a linkage design prob-
lem into polynomial form, a number of solution techniques
is available, each guaranteed to locate all possible solutions.
This collection of methods includes Gröbner Bases, Galois
Theory [8], and the reduction of entire systems via substi-
tution/elimination to a single univariate companion matrix
which can then be solved as an eigenvalue problem [9, 10].
Methods of resultants have been very popular in the study of
kinematics [9, 11–13], and are essentially formalised strate-
gies for performing elimination. While especially efficient
for small systems, resultant methods are difficult to gener-
alise for larger systems. A branch of numerical continu-
ation called polynomial continuation has been successfully
applied to many problems in kinematics [14–18]. Polyno-
mial continuation is a particularly appealing tool for solving
larger systems of equations because it is highly generalisable
(new systems can be adapted for solution with a minimum of
effort), and also because advances in polyhedral homotopy
methods [19–22] have dramatically reduced the number of
solution paths to be traced. In the following sections, polyno-



mial continuation will be used as a tool to design members of
a family of (generally underconstrained) foldable rings [23].
The continuation software was written in MATLAB [24].
The polyhedral homotopy algorithm is based largely on work
published by Li [19], while the path following algorithm was
written specifically for this application

2 Regular-Polygonal Foldable Rings
The type of linkage considered in this section is a cyclic

and equilateral ring (that is, it displays rotational symmetry
about a line passing through the centre of the ring), gener-
ally referred to as a regular polygon. Its purpose is most
likely to be the provision of a frame upon which to stretch a
membrane such as a flexible solar array or a radar. It could
also be used to support a reflecting antenna [25] in which
circumstance it might be referred to as a hoop-column an-
tenna. The inspiration for the foldable ring examined in this
section comes from a deployable spoked wheel designed by
the Astro Research Corporation for NASA, first described in
a conference paper [26], and later in a report [27]. The ma-
jority of the report is concerned with a ‘two-hinge’ design
for the ring/wheel, in which adjacent bars are connected to
one another by an intermediate hub block with one hinge at
each end (possibly connected internally by a form of gear-
ing). A more interesting design challenge comes in the form
of a ‘single-hinge’ ring, in which each bar is connected to its
neighbour by a single hinge. An example of a 10-bar version
of such a single hinge ring is shown in Figure 1. As can be
seen, the ring forms a regular polygon in its deployed config-
uration, and can be folded such that each of its bars is parallel
to the others in the stowed configuration.

In planar 4-bar point path synthesis, up to nine precision
points can be specified (in terms of their X and Y locations).
Here, to design the regular-polygonal foldable ring, a set of
angular ‘precision points’ is used. These points specify, not
any particular locations in physical space, but rather bar ori-
entations in terms of Euler angles. Note that the rotational
symmetry of the ring allows the entire ring to be designed in
terms of any one of its bars. Any bar of the ring can be re-
flected n−1 times (where n is the number of bars) to generate
the rest of the ring. The prescription of angular orientations
or bar inclinations to the global axis allows a designer to se-
lect the exact shape of the ring at a limited number of poses
during deployment. In this way, a designer can attempt to
steer the linkage along a certain path during its deployment.
It is possible that a number of different ring designs could
satisfy the constraints set by the designer; a situation which
manifests itself in the appearance of multiple solutions to a
system of closure/constraint equations. In general, it can-
not be known a priori how many, if any, solutions exist to
a given problem. Henceforth, the particular bar which has
been chosen to represent the entire ring will be referred to as
the design bar.

The number of bars (n) must be even. While 4-bar and
6-bar variants of the single-hinge foldable ring are overcon-
strained mechanisms (Bennett and Bricard linkages, respec-
tively), the focus here will be those rings with n ≥ 8. Since

Fig. 1. Top: the deployment of a 10-bar single-hinge ring, the mul-
tiple degrees of freedom are not apparent here as the deployment
has been carefully controlled, and the linkage supported by the ta-
ble underneath. Bottom: the deployment of the two-hinge design.
(From [27])

any spatial ring with n≥ 7 is certain to have at least one de-
gree of freedom, it is likely that a number of cables or spokes
would be required to constrain the deployment of the ring
to a desirable path. The exact nature of this constraint is
neglected henceforth (as it is not the main concern of this
paper), and is simply assumed to exist.

A top view of the single-hinge regular-polygonal de-
ployable ring is given in Figure 2. The highlighted design
bar also has its hinges shown as hl on the left and hr on the
right, where the subscripts l and r denote ‘left’ and ‘right’
respectively. It is necessary that the hinge vectors of this bar
(and hence those of all the other bars) remain in the planes
shown in Figures 2 and 3 during deployment. An isomet-
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Fig. 2. Top view of regular-polygonal foldable ring (in mid-
deployment) with n = 10. Global coordinates are indicated.

ric view of the design bar is shown in Figure 3. The hinges
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Fig. 3. Isometric view of individual bar in regular-polygonal ring with
global coordinates indicated. Two of the planes of reflection are
shown. The bar hinge vectors must remain in these planes at all
times.

are fixed to the end of each bar. An obvious question arises:
is it always possible to find a bar orientation such that the
hinges at the ends of the bar lie exactly in each of the two
planes shown in Figure 3, and if this is possible, how many
different orientations which achieve this are there? It is not
immediately clear that there are not an infinite number of
orientations. Using polynomial continuation, it can be guar-

anteed that every one of the possible solutions will be found
(including positive dimensional sets which indicate the pres-
ence of a continuum of solutions), so they can be enumerated
with confidence.

The next stage is to determine an appropriate set of de-
sign variables. In this analysis, bar lengths are not consid-
ered as variables: the lengths all being made equal to one
another, and set to unity without loss of generality. Bar thick-
ness, while being an important consideration for the self-
interference of real linkages, is assumed to be infinitesimally
small in this analysis. Consider instead the hinges attached
to each end of the design bar. To allow for maximum gener-
ality, they may have any orientation with respect to the local
coordinates of the bar. Figure 4 shows how the hinge vec-
tors are defined in local coordinates x, y, z for the bar. Each
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Fig. 4. Regular-polygonal ring bar shown in local coordinates with
hinge definitions. Note that the bar has been rotated to show the
angle definitions more clearly.

hinge is assigned a ‘longitude’ λ, and a ‘lattitude’ µ. Using
l and r again to denote the left and right hand ends of the
bar; the four design variables are {λl ,µl ,λr,µr}. The left and
right hinges can thus be constructed as unit vectors (in local
coordinates attached to the bar):

hl =

 cos(µl)
sin(µl)sin(λl)
−sin(µl)cos(λl)

 hr =

 cos(µr)
sin(µr)sin(λr)
−sin(µr)cos(λr)

 (1)

In order to ensure (mathematically) that the design bar
does not venture outside its two partitioning planes (see Fig-
ure 3), and that the hinge vectors attached to each end of the
design bar lie within each of these planes, it is necessary to
introduce two compatibility equations. The term ‘compati-
bility’ is used because the equations’ purpose is to enforce
certain constraints at the planes of symmetry, which then en-
sures that each link is compatible with the next (across the
plane of symmetry).

Define a rotation matrix R, which is a function of φ (a
roll), θ (a pitch), and ψ (a yaw). Specifically:

R = Rz(ψ)Ry(θ)Rx(φ)



where Rx, Ry and Rz perform rotations about the X , Y and
Z axes respectively. If the design bar undergoes a rotation
defined by R, then so do the hinge vectors at each of its ends.
Now assume that the two planes shown in Figure 3 have nor-
mal vectors nl on the left and nr on the right. It is now pos-
sible to write the two governing equations for the motion of
the bar (based on the fact that each hinge must remain in its
respective plane) as:

〈Rhl , nl〉 = 0

〈Rhr , nr〉 = 0
(2)

Together, these equations form the compatibility equations
for the ring. As depicted, the plane normals will have the
form:

nl =

 cos( π

n )
−sin( π

n )
0

 nr =

 cos( π

n )
sin( π

n )
0


in global coordinates. The two relationships in Equation

2 are written in terms of the input parameters φ, θ and ψ.
These three angles allow a designer to completely (although
not uniquely) specify the orientation of the design bar, and
hence, the exact shape of the foldable ring. While it is not
possible to specify the exact shape of a foldable ring at all
points during its deployment, by carefully selecting the hinge
orientations ({λl ,µl ,λr,µr}), a designer can create a foldable
ring which passes through a set of desired design bar orien-
tations as it deploys.

The remaining question is: how does a designer select
λl , µl , λr and µr? The compatibility equations (2) are written
in terms of φ, θ and ψ, as well as the four design variables
λl , µl , λr and µr. There are two fundamental compatibility
equations, three input (orientation) angles and four design
variables. There are a number of approaches which may be
taken to using the compatibility equations. The main guiding
principle is that four independent equations must be formed
in order to solve for all four of the design variables. Three
different methods will be explored:

1. use the two compatibility equations in their current
form, and use two sets of input angles to form two pairs
of the compatibility equations, resulting in the required
four equations;

2. combine the two compatibility equations into one by
eliminating the ψ input angle. This allows for four sets
of the remaining inputs {θ,φ} to be used to generate the
required four versions of the reduced single compatibil-
ity equation;

3. combine the two compatibility equations into one by
eliminating the φ input angle. A mixture of {θ,φ} and
{θ,ψ} type reduced compatibility equations is used to
design the ring.

2.1 Using the Original Form of the Compatibility Equa-
tions

It is possible to choose two sets of orientation (Euler)
angles {φ1,θ1,ψ1} and {φ2,θ2,ψ2}, and then use polyno-
mial continuation to arrive at a set of design variables which
describe a bar/ring system which will pass through the pre-
scribed orientations at some point during the ring’s deploy-
ment. In their current form, the two equations in Equation

2 are decoupled, but will solved simultaneously in this first
section to illustrate the use of the continuation method. To
ensure pure polynomial form, the sines (Sx) and cosines (Cx)
of the design variable angles are used instead of the angles
themselves. This doubles the number of unknowns, and re-
quires the addition of equations of the form C2

x +S2
x −1 = 0.

The full set of equations is given below.

F =



〈R(φ1,θ1,ψ1) . . .

hl(Cλl
,Sλl

,Cµl ,Sµl ,Cλr
,Sλr

,Cµr ,Sµr ) , nl(n)
〉

〈R(φ2,θ2,ψ2) . . .

hl(Cλl
,Sλl

,Cµl ,Sµl ,Cλr
,Sλr

,Cµr ,Sµr ) , nl(n)
〉

〈R(φ1,θ1,ψ1) . . .

hr(Cλl
,Sλl

,Cµl ,Sµl ,Cλr
,Sλr

,Cµr ,Sµr ) , nr(n)
〉

〈R(φ2,θ2,ψ2) . . .

hr(Cλl
,Sλl

,Cµl ,Sµl ,Cλr
,Sλr

,Cµr ,Sµr ) , nr(n)
〉

C2
λl
+S2

λl
−1

C2
µl
+S2

µl
−1

C2
λr
+S2

λr
−1

C2
µr
+S2

µr
−1



= 0

This system has a total degree of 28 = 256 in the eight un-
knowns. However, it has a mixed volume of only 16 [28],
indicating that the vast majority of the solutions are at infin-
ity.

There are two critical phases to the deployment; fully
deployed and fully stowed. Since it is possible to specify
two sets of input angles only when using the original form of
the compatibility equations, it makes some sense to use these
deployment limit points as the design goals. When deployed,
the design bar has a pitch (θ) of 0◦, and a yaw (ψ) of 0◦. The
roll (φ) is irrelevant. When the bar is stowed, it has a pitch
of 90◦, and both roll and yaw are irrelevant. As an example,
choose the following set of angles (in radians): φ1

θ1
ψ1

=

 0
0
0

 ;

 φ2
θ2
ψ2

=

 π

2
π

2
0

 (3)

This set gives sixteen real solutions, which all reduce to the
same hinge vectors. One solution is:

λl
µl
λr
µr

=


−18◦

−84.3◦

−162◦

−95.7◦

⇒ hl =

 0.0999
0.3075
0.9463

 , hr =

−0.0999
0.3075
−0.9463


This particular solution is identical to that derived using the

methods in [29], in which it is assumed that each bar has
an (isosceles) triangular cross-section. The symmetry of the
solution is obvious. Since this is the only solution to appear
in the continuation process, it can be said that the isosceles
triangle based design is the only one which satisfies these
particular deployed and stowed configuration requirements.
The orientation of the design bar during closure is shown
in Figure 5, while a sequence of the ring moving from the
deployed to stowed configuration is given in Figure 6. It
is, of course, possible to choose other sets of input angles,
but the set described above illustrates how continuation can
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Fig. 5. Example of a ring design using the original compatibility
equations (n = 10), and the angle targets given in Equation 3.
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Fig. 6. Example of a fully feasible ring moving from deployed to
stowed positions (clockwise from bottom left). It is based on the tar-
gets of Equation 3, and its angular progression is shown in Figure
5.

be used to design a ring which could be feasibly constructed
and operated and have real practical applications.

Another way to solve the simple case presented in this
section is to assume that the fully deployed pose must always
be one of the targets. From this deployed pose (φ = θ = ψ =
0), the hinge unit vectors can be defined in terms of a single
rotation from vertical in their respective planes (this method
is employed in Section 3). The vectors of Equation 1 can be
rewritten as:

hl =

−sin(π

n )sin(αl)
−cos(π

n )sin(αl)
cos(αl)

 hr =

 sin(π

n )sin(αr)
−cos(π

n )sin(αr)
cos(αr)


where αl and αr are the rotations of the hinge vectors in the
left and right planes. Using the second (stowed) set of target
angles from Equation 3, Equation 2 becomes:

sin(αl)cos2
(

π

n

)
+ cos(αl)sin

(
π

n

)
= 0

cos(αr)sin
(

π

n

)
− sin(αr)cos2

(
π

n

)
= 0

which can be solved separately for the angles αl and αr. This
implicitly includes the deployed pose in the solution. For
generality, no initial pose will be included in the hinge unit
vector definitions, and the four design variables of Equation
1 will be retained.

2.2 Using {φ , θ} to Specify Bar Orientation
Sometimes, it is beneficial to reduce the description of

the motion of a deployable structure to a single compatibility
equation, as this reduces the amount of information which
must be specified a priori in a design using continuation. If
the two compatibility equations in Equation 2 are combined,
only two of the three input angles need be specified to define
a target point, leaving the third free. To combine the two
compatibility equations, one of the three variables; φ,θ or ψ

must be eliminated. It is interesting to observe what happens
when the dependence on ψ is removed.

The equations in 2 can be written as:[
ml1 ml2
mr1 mr2

][
Cψ

Sψ

]
=

[
0
0

]
where: [

ml1 ml2
mr1 mr2

]
= M(φ,θ,λl ,µl ,λr,µr)

For this system to have a solution, then

f̃ ≡ det(M) = ml1 mr2 −ml2 mr1 = 0 (4)

(this particular elimination technique was also used in [27]
as part of a different compatibility equation formulation).
Equation 4 is a single compatibility equation for the system,
and is written completely in terms of the angular inputs φ

and θ, as well as the design variables {λl ,µl ,λr,µr}. The
equation has 9 terms. This equation can be used to define a
necessary relationship between φ and θ at a point in the bar’s
motion, without specifying anything about the third angular
input, ψ.

Once again, eight equations form the continuation tar-
get set. This time, four sets of pairs of input angles can be
selected: {φi,θi} i = 1, . . . ,4. These sets form the target
system as:

F =



f̃
(
{φ1,θ1} ,

{
Cλl

,Sλl
,Cµl ,Sµl ,Cλr

,Sλr
,Cµr ,Sµr

})
f̃
(
{φ2,θ2} ,

{
Cλl

,Sλl
,Cµl ,Sµl ,Cλr

,Sλr
,Cµr ,Sµr

})
f̃
(
{φ3,θ3} ,

{
Cλl

,Sλl
,Cµl ,Sµl ,Cλr

,Sλr
,Cµr ,Sµr

})
f̃
(
{φ4,θ4} ,

{
Cλl

,Sλl
,Cµl ,Sµl ,Cλr

,Sλr
,Cµr ,Sµr

})
C2

λl
+S2

λl
−1

C2
µl
+S2

µl
−1

C2
λr
+S2

λr
−1

C2
µr
+S2

µr
−1



= 0

This system has a total degree of 44.24 = 4096, but a mixed
volume of only 96. Typically, all 96 solutions of the target
system are non-singular and geometrically isolated.



As an example, consider the target angles (again in radi-
ans): [

φ1
θ1

]
=

[
0.05
0.1

]
;

[
φ2
θ2

]
=

[
0.1
0.3

]
;[

φ3
θ3

]
=

[
0.3
0.7

]
;

[
φ4
θ4

]
=

[
0.5
1.2

] (5)

which produces the result shown in Figure 7. Although there
are two separate φ paths which hit all of the input angle tar-
gets, neither design could be said to be feasible, primarily
because neither progresses all the way to θ = π/2 (the fully
stowed configuration).
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Fig. 7. Example of system designed with four {φ,θ} specifications
(n = 10), and the angle targets given in Equation 5.

Next, alter the target angles slightly to include one target
pair at θ = π/2:[

φ1
θ1

]
=

[
0.05
0.1

]
;

[
φ2
θ2

]
=

[
0.1
0.3

]
;[

φ3
θ3

]
=

[
0.3
0.7

]
;

[
φ4
θ4

]
=

[
0.5

π

2

] (6)

with the result shown in Figure 8. In this case there are
actually four separate φ paths which hit the first three targets,
but none which hit the fourth at θ = π/2. This illustrates an
interesting feature. It happens that:

∂ f̃
∂φ

∣∣∣∣
θ= π

2

= 0

This means that the specification of any value of φ is irrel-
evant when θ = π/2 as the equation exhibits no sensitivity
to φ. Any value of φ4 in the example above will produce
the same results as those shown in Figure 8. The advantage
of using Equation set 6 as opposed to Equation set 5 is that
the former ensures that a proper stowed shape (θ = π/2) is
reached, even though φ is unspecifiable at that point.
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Fig. 8. Second example of system designed with four {φ,θ} spec-
ifications (n = 10), and the angle targets given in Equation 6.

2.3 Using {θ , ψ} to Specify Bar Orientation
To ensure a proper deployed ring shape, the variable ψ

must be specifiable. The two original compatibility equa-
tions can be combined by way of the elimination of the vari-
able φ. The power of this reduction is that it allows the yaw
angle to be specified at a particular pitch angle. This is partic-
ularly useful for ensuring that the ring forms a regular poly-
gon when fully deployed by enforcing a zero yaw angle at
zero pitch (fully deployed). The elimination of the angle φ

from the governing Equations 2 is more involved than the
elimination of ψ, but demonstrates the way in which new un-
knowns can be introduced to pose a compatibility equation in
pure polynomial form.

Start with the left hinge constraint, and condense its no-
tation as follows:

〈Rhl , nl〉= wl0 +wl1Cφ +wl2 Sφ = 0

The wli terms represent combinations of trigonometric func-
tions of the input angles θ and ψ, and the design variables.
The explicit expressions are omitted for brevity. Next, make
the substitution Cφ = m and Sφ =

√
1−m2, which after rear-

ranging gives:

(w2
l1 +w2

l2)m
2 +2wl0 wl1 m+w2

l0 −w2
l2 = ζ2m2 +ζ1m+ζ0 = 0

where
ζ2 = w2

l1 +w2
l2

ζ1 = 2wl0 wl1

ζ0 = w2
l0 −w2

l2

Similar treatment of the equation for the right hinge leads to
a second quadratic in m of the form:

ξ2m2 +ξ1m+ξ0 = 0

Solving each quadratic for m and equating the results gives:

−ζ1±
√

ζ2
1−4ζ0ζ2

2ζ2
=
−ξ1±

√
ξ2

1−4ξ0ξ2

2ξ2
(7)

At this stage, introduce the new unknowns:

Γ
2 = ζ

2
1−4ζ0ζ2

Ω
2 = ξ

2
1−4ξ0ξ2



If these new variables are substituted into Equation 7, then
the compatibility equation system can be written as:

f̆ ≡ ξ2 (Γ−ζ1)−ζ2 (Ω−ξ1) = 0

and
Γ

2−ζ
2
1 +4ζ0ζ2 = 0

Ω
2−ξ

2
1 +4ξ0ξ2 = 0

which are all pure polynomials written completely in terms
of the angular inputs ψ and θ, as well as the design variables
{λl ,µl ,λr,µr}.

Clearly it is going to be more computationally expen-
sive to specify design precision points in terms of {θ,ψ}
pairs than {φ,θ} pairs, as the number of design variables,
and hence equations, will increase by two for each pair. As a
compromise, a system of target equations which is a combi-
nation of the {φ,θ} and {θ,ψ} based compatibility equations
will be used:

F =



f̃
(
{φ1,θ1} ,

{
Cλl

,Sλl
,Cµl ,Sµl ,Cλr

,Sλr
,Cµr ,Sµr

})
f̃
(
{φ2,θ2} ,

{
Cλl

,Sλl
,Cµl ,Sµl ,Cλr

,Sλr
,Cµr ,Sµr

})
f̃
(
{φ3,θ3} ,

{
Cλl

,Sλl
,Cµl ,Sµl ,Cλr

,Sλr
,Cµr ,Sµr

})
f̆
(
{ψ1,θ4} ,

{
Cλl

,Sλl
,Cµl ,Sµl ,Cλr

,Sλr
,Cµr ,Sµr

})
Γ

2−ζ
2
1 +4ζ0ζ2

Ω
2−ξ

2
1 +4ξ0ξ2

C2
λl
+S2

λl
−1

C2
µl
+S2

µl
−1

C2
λr
+S2

λr
−1

C2
µr
+S2

µr
−1



= 0

This system has an impressive total degree of 43.7.8.8.24 =
458752, but a mixed volume of only 768. Using this sys-
tem, it is possible to specify what the yaw angle should be at
one particular pitch angle, as well as what the roll should be
at a further three pitches. This gives a very large degree of
control over the motion of the ring.

As an example, consider the target angles:[
ψ1
θ1

]
=

[
0
0

]
;

[
φ1
θ2

]
=

[
π

16
π

8

]
;[

φ2
θ3

]
=

[
π

8
π

4

]
;

[
φ3
θ4

]
=

[ 3π

16
3π

8

] (8)

This generates the paths shown in Figure 9. One of the two
separate designs shown here which hit the various targets,
actually gets quite close to full closure at θ = π/2 by chance,
but just fails to achieve full closure. Notice, however, that
the ψ paths pass through ψ = 0 at full deployment, which is
very likely to be a desirable design criterion for the ring. To
actually ensure full closure, one of the target equations needs
to specify θ = π/2, as in:[

ψ1
θ1

]
=

[
0
0

]
;

[
φ1
θ2

]
=

[
0.25

π

6

]
;[

φ2
θ3

]
=

[
0.5

π

3

]
;

[
φ3
θ4

]
=

[
−
π

2

] (9)

which results in the two separate ring designs shown in Fig-
ure 10. While both designs reach a fully stowed position
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Fig. 9. Example of system designed with three {φ,θ} specifica-
tions and one {θ,ψ} (n = 10), and the angle targets given in Equa-
tion 8.

with θ = π/2, only one of the two designs starts with ψ = 0
in the deployed position (labelled as design # 1), so only one
completely satisfies the design requirements. This feasible
design is represented in a deployment sequence in Figure 11.
The feasible ring has the hinge vectors:

λl
µl
λr
µr

=


136.78◦

−96.80◦

172.78◦

−94.64◦


⇒ hl =

−0.1184
−0.6800
−0.7236

 , hr =

−0.0809
−0.1253
−0.9888


Once again, the value of φ1 specified is irrelevant since f̃ is
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Fig. 10. Second example of system designed with three {φ,θ}
specifications and one {θ,ψ} (n = 10), and the angle targets given
in Equation 9.

completely insensitive to φ when θ = π/2. In this case, what
has been designed is a completely functional ring which has
all bars parallel in its fully stowed state, and forms a regular
polygon when deployed.
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Fig. 11. The deployment sequence of design #1 in Figure 10 (in
black, based on target set in Equation 9) is, coincidentally, quite sim-
ilar to that in Figure 6 (in white). By focussing on the deployment
of a single bar it is possible to observe the differences between the
two designs. The two λl and λr angles are quite different, while the
deployed states of each design appear quite similar. This is because
the roll angles (φ) applied to each design bring them into closer align-
ment. (Note that the five poses shown here do not correspond to the
target poses used in the design process)

3 Doubly Symmetric 8-Bar Foldable Rings
The requirement that the foldable ring be a regular poly-

gon (when deployed) is now relaxed. The relaxation greatly
increases the variety of rings which might be considered, and
allows, for instance, frames supporting almost any shape of
membrane. Of interest are frames which are able to fold up
into a compact stowed shape (although not necessarily with
all bars completely parallel, as in the previous section). To
rein in the scope of the problem, two perpendicular planes
of symmetry are introduced, with their intersection defining
a central axis. The two-fold plane symmetry means that the
number of bars will always be a multiple of four. The case
of the 8-bar foldable ring is presented here.

The ring’s deployed position is used as the basis for its
specification. The design parameters for this ring are shown
in Figures 12 and 13, the latter being a top view showing the
locations of the vertices in XY coordinates (capitalisation de-
noting global coordinates). Single hinges, each with a single
rotational degree of freedom, connect each bar to the next.
Hinges a, b and c all lie in the XY plane in the deployed
position. The only constraints placed on the positioning of
the vertices are that hinge a must lie on the X axis, meaning
Ya = 0, and hinge c must lie on the Y axis, meaning Xc = 0.
This leaves four initial positional parameters for the loop,
{Xa,Xb,Yb,Yc}.

To illustrate a further way in which continuation can be
used to design foldable rings, the rings in this section will

Z

Y

X

.a

.b

.c

Hinge a

Hinge b

Hinge c

l1

l1

l1

l1

l2

l2

l2

l2

Fig. 12. The doubly symmetric 8-bar foldable loop in the deployed
configuration. Hinge inclinations to the vertical are shown. The two
perpendicular planes of symmetry are shown bounding the first XY
quadrant. Bar lengths l1 and l2 are also labelled.
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Fig. 13. The doubly symmetric 8-bar foldable loop in the deployed
configuration. Hinge XY plane locations are shown.

be designed by way of a precise specification of the stowed
ring’s shape. In other words, all the design effort will go into
defining a single position, rather than a sequence of positions
as in Section 2. In a further departure from the methods of
Section 2, constraints will take the form of distance relations,
or exact node positions, rather than bar orientations. The en-
tire loop can be designed by focusing on the first XY plane
quadrant (as shown in Figure 13), and reflecting the result in
the XZ and Y Z planes to generate the rest of the ring. Setting
the locations of the vertices (a,b and c) automatically de-
fines the bar lengths l1 and l2, as well as the angles γa,γb and
γc. The parameters αa,αb,αc and β, and the hinge rotations
φa,φb and φc are the design variables which remain to be de-
termined. The hinge rotations are all considered to be zero
in the deployed configuration. In the design of a loop which



is capable of folding up into a tight bundle, hinge b must be
able to rotate such that bars 1 (length l1) and 2 (length l2) are
parallel and coincident. It can be shown that for this to occur,
it is necessary that β = γb/2. The intention is not to produce
a stowed shape in which bars 1 and 2 are completely paral-
lel. However, setting β to γb/2 simplifies the process while
ensuring that the stowed shape is a relatively compact bundle
of bars.

It is useful to define a series of basis vectors for the ring.
Let {e(G)

X ,e(G)
Y e(G)

Z } define the global basis. Next, define two
local axes, with their origins at points a and c respectively.
These axes are free to rotate, save that their bases must fol-
low:

e(a)y = e(G)
Y

e(c)y =−e(G)
X

The vectors e(a)z and e(c)z define the hinge axes at points a
and c. One can construct a similar basis at point b.

A collection of matrix operators can be defined to sim-
plify later expressions.

a) T (c)
(a) ({l1, l2,γa,γb,γc},{φa,φb,φc,αa,αb,αc})

b) T (a)
(b) ({l1,γa,γb},{φa,φb,αa,αb})

c) T (c)
(b) ({l2,γb,γc},{φb,φc,αb,αc})

d) T (a)
(c) ({l1, l2,γa,γb,γc},{φa,φb,φc,αa,αb,αc})

e) R(a)
(c) ({γa,γb,γc},{φa,φb,φc,αa,αb,αc})

(10)

where T (c)
(a) is a (4× 4) coordinate transformation matrix

which converts locations expressed in the coordinates at-
tached to a to those attached to c. Based on this, T (c)

(a) 0 would
give the location of the origin of coordinate system a (and
hence, hinge a) in the basis attached to c. Similarly for T (a)

(b) ,

T (c)
(b) and T (a)

(c) . For example, if Ty(αi,dy) performs a rota-
tion of αi about the y axis, and a translation dy along it, and
Tz(γi,dz) acts similarly on the z axis, then T (a)

(c) can be ex-
pressed as:

T (a)
(c) = Tz(φa,0)Ty(−αa,0)Tz(γa,0)Ty(0, l1)Tz(γb/2,0) . . .

Ty(αb,0)Tz(φb,0)Ty(−αb,0)Tz(γb/2,0)Ty(0, l2) . . .

Tz(γc,0)Ty(αc,0)Tz(φc,0)

(11)

R(a)
(c) is a (3×3) rotation matrix which converts orientations

expressed in the coordinates attached to c to those attached to
a. The defining compatibility equation for the ring can now
be expressed as:

f̄e ≡ R(a)
(c)e

(c)
y · e

(a)
y = 0 (12)

This equation enforces the double plane symmetry shown in
Figures 12 and 13. It forces e(c)y and e(a)y to be perpendicu-
lar at all times, which subsequently forces e(c)z and e(a)z (the
hinge vectors) to lie in the planes depicted.

Some thought can now be given to the kind of foldable
8-bar a designer might like to construct. Firstly, it is likely

that most applications will require a convex polygonal de-
ployed shape. Next, the relationship between any driven and
passive hinges should be as simple as possible to aid deploy-
ment. It is also likely that any practical 8-bar loop of this type
will not be required to fold into as tightly packed a bundle as
possible, i.e. with bars stowed perfectly parallel. Some space
will be left in the centre of the stowed linkage to accommo-
date a central deployment assistance mechanism, or a folded
flexible sheet. A top view of a stowed linkage is given in Fig-
ure 14, showing the dimensions of the internal space. Lastly,
any of the results derived using continuation will have to be
checked for faults such as bar collisions, which cannot easily
be accounted for in the continuation process.

(a) 8-bar linkage in stowed configuration (side
view).
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(b) 8-bar linkage in stowed configuration (top view).

Fig. 14. Key dimensions of 8-bar in stowed configuration.



In Section 2, Euler angles were used to specify bar ori-
entations (in global coordinates) as precision points. In a
departure from this kind of precision point design method,
the doubly symmetric 8-bar foldable ring in this section is
designed by way of an exact specification of the linkage’s
stowed shape. Constraint equations can be written in terms
of distances rather than angles (although the design variables
themselves will again be angles). By choosing to focus only
on the stowed shape, all control over the deployment path
is relinquished. Choice of deployment path is relegated to
the second more subjective, stage of the continuation design
process in which designs may be chosen from amongst the
continuation-derived results.

To achieve the stowed configuration shown in Figure
14, it is necessary to introduce three further unknowns
in the form of the hinge angles in the stowed position,
φas, φbs and φcs. This makes a total of six unknowns;
{φas,φbs,φcs,αa,αb,αc}. If one assumes that the locations
of the hinges a, b and c have been set (which directly deter-
mines the parameters {l1, l2,γa,γb,γc}), then only these six
unknowns remain to be found. Making use of the dimen-
sions shown in Figure 14, it is possible to construct a system
of constraint equations which define the stowed shape:

f̄a ({l1,γb,γc}, . . .

{φbs,φcs,αb,αc}) ≡ T (c)
(a) 0 · e(c)y +δaX

f̄b ({l1,γa},{φas,αa}) ≡ T (a)
(b) 0 · e(a)y −δbY

f̄c ({l2,γc},{φcs,αc}) ≡ Yb

Xb
T (c)
(b) 0 · e(c)y +δbY

f̄d ({l1, l2,γa,γb}, . . .

{φas,φbs,αa,αb}) ≡ T (a)
(c) 0 · e(a)y −δcY



= 0 (13)

Note that there are fewer arguments to each of these func-
tions than there are to each corresponding matrix in Equa-
tion 10. This is because it is only the origin of each hinge’s
coordinate system that is of interest in each case. Equation
f̄a is expressed in the coordinates of the local axes attached
to hinge c, and sets the distance hinge a should sit away
from the origin in the X direction in the stowed configura-
tion. Equation f̄b is expressed in the coordinates of the local
axes attached to hinge a, and sets the distance hinge b should
sit away from the X axis when stowed. Equation f̄c is in local
hinge c coordinates, and sets the distance hinge b sits away
from the Y axis when stowed. The Yb/Xb factor included
here ensures that the position of hinge b in the deployed and
stowed configurations, and the global origin, are collinear.
The inclusion of the Yb/Xb factor also means that the offset
δbX does not need to be specified explicitly. Equation f̄d is in
local hinge a coordinates, and sets the offset of hinge c from
the X axis when stowed.

The four constraint and single compatibility equations
given above are sufficient to specify a foldable linkage with
several desirable characteristics. These five equations, to-
gether with the six design variables {φas,φbs,φcs,αa,αb,αc},
form an under-determined system which could be used to
design a family of linkage designs. As an alternative, an ad-
ditional constraint is introduced which simply has the form:

φc = φa

which enforces the symmetry and foldability of the linkage.
Stipulating that the hinge angles at a and c must be the same
at all times may have some practical advantages. If these
hinges were, say, driven by motors at the same rate, or if
some form of mechanical coupling existed between them,
the linkage would behave as though it had a single degree of
freedom, and expand to be rigid. The four hinge b’s could
be left free to rotate. This new equality reduces the number
of design variables to five, resulting in a square system of
equations.

The form of Equation f̄c, together with the constraint
φc = φa, has an interesting consequence in terms of the mo-
tion of hinge b during deployment. This combination is the
equivalent, mathematically, to including a further constraint
equation requiring the projection of hinge b onto the XY
plane to remain on the same line (formed by the hinge b
location when deployed, and the origin) at all times during
deployment (hinge b expands radially away from the centre
during deployment). This equivalence can be observed by
actually constructing such a constraint equation, and noting
that its gradient with respect to {φa/c,φb,αa,αb,αc} is al-
ways spanned by any four of the five rows of the Jacobian
formed by the other five equations.

Explicitly, the full set of target equations for the doubly
symmetric 8-bar foldable ring is given by:

F =



f̄a
(
{l1,γb,γc},{Cφbs ,Sφbs ,Cαb ,Sαb ,Cαc ,Sαc}

)
f̄b
(
{l1,γa},{Cφas ,Sφas ,Cαa ,Sαa}

)
f̄c ({l2,γc},{Cαc ,Sαc})
f̄d ({l1, l2,γa,γb}, . . .
{Cφas ,Sφas ,Cφbs ,Sφbs ,Cαa ,Sαa ,Cαb ,Sαb}

)
f̄e ({γa,γb,γc}, . . .
{Cφas ,Sφas ,Cφbs ,Sφbs ,Cαa ,Sαa ,Cαb ,Sαb ,Cαc ,Sαc}

)
C2

φas
+S2

φas
−1

C2
φbs

+S2
φbs
−1

C2
αa

+S2
αa
−1

C2
αb

+S2
αb
−1

C2
αc
+S2

αc
−1



= 0

This system of ten equations in ten unknowns has a total de-
gree of 22400, but a mixed volume of only 512. The system
was initially given random complex coefficients and solved
using polyhedral homotopy techniques. The real-coefficient
systems described below were solved by constructing a co-
efficient homotopy from the initial complex-coefficient sys-
tem.

3.1 Continuation Results for Arbitrarily Positioned
Vertices

To test the design method, some random vertex locations
were selected, with the proviso that the deployed linkage be
a convex polygon. The initial parameters for this first exam-
ple are given in Table 1. The particular value of the δbY
offset was chosen in this case because it causes hinge b to be
situated a distance of 0.15 units radially from the Z axis (the



Parameter Value

Hinge a location {1,0}

Hinge b location {0.8,0.4}

Hinge c location {0,0.8}

δaX 0.15

δbY 0.06708

δcY 0.15

Table 1. Initial parameters for 8-bar design example with arbitrarily
positioned vertices.

same distance as hinges a and c). This system yielded 32 ge-
ometrically isolated solutions. The 32 geometrically isolated
solutions were found to reduce to four distinct real designs,
with their deployment paths shown in Figure 15. Only one of
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(a) The four distinct solutions
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(b) Detail of only feasible solution

Fig. 15. Internal angles for doubly symmetric 8-bar foldable ring with
arbitrarily positioned vertices. All simulations were started at the ring
stowed positions. Only design # 4 was found to progress satisfactorily
from the stowed to deployed configuration.

the finite, real solutions (labelled as design # 4) was found to
satisfy the constraints, and to operate in a totally satisfactory
manner. That is to say, all hinges open smoothly from stowed
to deployed, and all hinges stay within their own quadrant
at all times during deployment. As expected, the vertical
projection of hinge b onto the XY plane followed the line
described by Y = Yb/Xb.X , with only the height above this
plane varying. A summary of the details for the single fea-
sible design found is given in Table 2. The deployment is
shown in Figure 16.

Parameter Value (rad)

φas,φcs -1.8797

φbs -2.3971

αa 0.1400

αb -2.2821

αc -0.1400

Table 2. Design variables for 8-bar with arbitrarily positioned ver-
tices, design # 4.

1

2

3

4

5

Fig. 16. Folding of 8-bar with arbitrarily positioned vertices, example
design # 4; clockwise from bottom left.

3.2 Continuation Results for Rectangular 8-Bars
One particularly interesting subset of the 8-bar foldable

loop is the one for which:

γa = 0

γb = π/2

γc = 0

This describes a linkage which is rectangular in the deployed
configuration. A rectangular linkage can be designed using
polynomial continuation in much the same way as a linkage
with arbitrarily positioned vertices. The only difference is
that the new special values of the γ angles cause f̄b (Equa-
tion 13) to become equivalent to f̄c. This reduces the total
number of equations to four. There are still five unknowns



({φas/cs,φbs,αa,αb,αc}), however, which means a new rela-
tionship needs to be introduced to square up the system. A
new relationship of the form φbs =±2φas is introduced. The
rationale behind this is that the hinge angles φa and φc actu-
ally only constitute ‘half’ angles, in that they span the angle
from one bar to a central plane of symmetry. In the construc-
tion of a physical model, a hinge which opened to twice that
value would be required to link one bar to the next. It was
hypothesised that if hinge b could be set to open to twice the
value of the two (equal) half-angles of hinges a and c, then
perhaps a single type of hinge, designed to open only as far
as a certain fixed angle, would be required to construct the
entire loop. This reduced 4×4 system of polynomials has a
mixed volume of only 96.

An example of some initial design parameters for a rect-
angular loop are given in Table 3. This time, only sixteen

Parameter Value

Hinge a location {1.1,0}

Hinge b location {1.1,0.7}

Hinge c location {0,0.7}

δaX 0.1

δbY 0.0537

δcY 0.1

Table 3. Initial parameters for rectangular 8-bar design example.

real solutions were found, but again, four of them were geo-
metrically distinct. The four deployment paths are shown in
Figure 17. The details of the one feasible design are given in
Table 4. What is immediately apparent is that φbs 6=±2φas.

Parameter Value (rad)

φas,φcs 1.4500

φbs -3.3832

αa -1.0613

αb -1.7585

αc -0.8795

Table 4. Design variables for rectangular 8-bar, design # 1.

However, what is the case is that cos(φbs) = cos(2φas) and
sin(φbs) = sin(2φas). This is not surprising, as the specifica-
tion φbs = 2φas has the equivalent effect on the equations of
setting:

cos(φbs) = cos2(φas)− sin2(φas)

sin(φbs) = 2sin(φas)cos(φas)

As it happens, no feasible solutions satisfying φbs = ±2φas
were found for this rectangular linkage. The folding process
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(a) The four distinct solutions
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(b) Detail of only feasible solution

Fig. 17. Internal angles for rectangular 8-bar foldable ring. All sim-
ulations were started at the ring deployed positions. Only design #
1 was found to progress satisfactorily from the deployed to stowed
configuration.

is shown in Figure 18. It is possible that a rectangular frame
with a different aspect ratio might be deployable with φbs =
±2φas, but none has been found to date.

1

2

3

4

5

Fig. 18. Folding of rectangular 8-bar, example design # 1; clockwise
from bottom left.



3.3 Note on Deployability
Rather than use a 4, 5 or 6-bar linkage, a designer might

choose to use an 8-bar linkage as the basis of a deployable
ring because of the greater range of deployed shapes possi-
ble, and because of the greater control which can be exer-
cised over the way in which the frame deploys. However,
some extra complications need to be considered. Many de-
ployable frames based on 4, 5 or 6-bar linkages have only
a single degree of freedom, and hence have pre-determined
deployment paths which can often be easily followed sim-
ply by applying sufficient moments at one or more of the
hinges [30, 31]. By their nature, 8-bar spatial linkages (ar-
ranged in a loop) will have at least two degrees of freedom. It
is important that the extra benefit derived from the increased
versatility in shape outweigh the increase in complexity of
the deployment system. The double symmetry of the frames
considered in this section means that hinge b is replicated
four times around the loop, while hinges a and c are repli-
cated twice each. If (as was the case in the examples given
above), hinge angles φa and φc are set to be equal, then two
distinct values of hinge angle will be present in the loop. At
this stage, the best method of deploying a doubly symmet-
ric 8-bar frame is unknown, although it is possible that a set
of four identical, damped, spring-loaded hinges attached to
either hinges b or a,c might suffice.

The charts displaying angles φa,φc vs. φb provide some
valuable information about the deployability of a given 8-bar
design. If hinge b is to be the driven hinge, then it is de-
sirable that φb be a monotonic function of φa,φc, or if a,c
is to be the driven hinge, that φa,φc be a monotonic func-
tion of φb over the deployment range. Consider design #
4 of the arbitrarily positioned vertices example, whose de-
ployment path is shown in Figure 15. Notice that φa, φc in-
crease/decrease monotonically, meaning that spring loaded
hinges could, most likely, be used to deploy the ring without
causing it to deviate from its prescribed deployment path.
Next, consider design # 1 of the rectangular 8-bar example,
whose deployment path is shown in Figure 17. This time φb
increases/decreases monotonically with φa, φc, but the con-
verse is not true. Hinge b presents itself as the only candidate
for a driven hinge.

4 Conclusion
Polynomial continuation has been shown to be a reliable

method of designing deployable spatial rings to meet cer-
tain geometric criteria. Fundamentally, the design process
involves the construction of relevant compatibility equations
for the basic configuration of the ring, and then solving these
equations for the design variables required to allow the ring
to exhibit the desired kinematic properties. Solving these
compatibility equations by standard numerical techniques is
unlikely to reveal a real solution, let alone the full comple-
ment of solutions. By using continuation it is possible to
guarantee that every satisfactory combination of design vari-
ables has been found.

In Section 2, regular polygonal foldable rings were de-
signed by first deriving a compatibility equation, then re-

expressing that same equation several times to form a system
representing a ring which passes through a prescribed series
of shapes. Three different combinations of input orientation
parameters were studied, and the usefulness of each combi-
nation to the design process was outlined.

In Section 3 a single compatibility equation was used in
concert with a collection of constraint equations to design a
(non-regular) doubly symmetric polygonal ring which was
able to fold into a specified stowed shape.

If the linkage closure/compatibility equations, and the
constraint equations have been posed correctly, then the use
of continuation guarantees that every possible design option
satisfying the imposed constraints will be found. In a sec-
ond step of the design process, a designer can confidently
exercise his/her judgement in deciding which of the feasible
options best suits the application under consideration.
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